N ov 2 00 7 A nonstructure theorem for countable , stable , unsuperstable theories

نویسنده

  • Michael C. Laskowski
چکیده

A trichotomy theorem for countable, stable, unsuperstable theories is offered. We develop the notion of a ‘regular ideal’ of formulas and study types that are minimal with respect to such an ideal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A nonstructure theorem for countable, stable, unsuperstable theories

A trichotomy theorem for countable, stable, unsuperstable theories is proved. We develop the notion of a ‘regular ideal’ of formulas and study types that are minimal with respect to such an ideal.

متن کامل

Constructing Strongly Equivalent Nonisomorphic Models for Unsuperstable Theories, Part C

In this paper we prove a strong nonstructure theorem for κ(T )-saturated models of a stable theory T with dop. This paper continues the work started in [HT].

متن کامل

On the Number of Elementary Submodels of an Unsuperstable Homogeneous Structure

We show that if M is a stable unsuperstable homogeneous structure, then for most κ < |M| , the number of elementary submodels of M of power κ is 2 . Through out this paper we assume that M is a stable unsuperstable homogeneous model such that |M| is strongly inaccessible (= regular and strong limit). We can drop this last assumption if instead of all elementary submodels of M we study only suit...

متن کامل

A trichotomy of countable, stable, unsuperstable theories

Every countable, strictly stable theory either has the Dimensional Order Property (DOP), is deep, or admits an ‘abelian group witness to unsuperstability’. To obtain this and other results, we develop the notion of a ‘regular ideal’ of formulas and study types that are minimal with respect to such an ideal.

متن کامل

0 N ov 2 00 5 UPWARD STABILITY TRANSFER FOR TAME ABSTRACT ELEMENTARY CLASSES

Grossberg and VanDieren have started a program to develop a stability theory for tame classes (see [GrVa1]). We name some variants of tameness (Definitions 1.4 and 1.7) and prove the following. Theorem 0.1. Let K be an AEC with Löwenheim-Skolem number ≤ κ. Assume that K satisfies the amalgamation property and is κ-weakly tame and Galois-stable in κ. Then, K is Galois-stable in κ for all n < ω. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008